CScI 1913: Introduction to Algorithms, Data Structures, and Program Development
Computer Laboratory 5
October 11-12, 2016

0. Introduction.

Most modern operating systems, like Unix and GNU/Linux, store files in directories. They can have directories
nested inside those directories, and still more directories nested inside those, etc. Files containing data can also
reside in any directory, no matter how deeply it is nested. Also, files can have optional fypes that tell what kind
of data they contain.

A Pathname gives a sequence of directory names that tells how to find a file in a nested series of directories.
In this laboratory assignment, you will implement a Java class that represents a pathname. Among other things,
your class will have a more interesting equals method than was discussed in the lectures.

1. Theory.

In Unix-like operating systems, a pathname starts with ‘/’, followed by one or more directory names, separated
by ‘/’s. The pathname ends with the name of a file. Following that, there can optionally be a “.’, followed by the
name of a type that tells what the file contains. Each pathname gives instructions about how to find a file in a
series of nested directories. For example, the pathname /home/jim/cscil913/final.txt gives these
instructions.

1. Start at a special root directory /.

2. In the root directory is another directory, home. Go inside it.
3. In home is yet another directory, jim. Go inside it.

4.1In jim is still another directory, csci1913. Go inside it.
5.In cscil913 is a file named final.

6. The file £inal has type txt, so it contains text.

Pathnames in a real operating system can have many directories, but the ones you will implement here can have
at most 10.

2. Implementation.

In this laboratory assignment, you will write a Java class called Pathname that represents a pathname. Your class
must have the following private variables, so its first few lines must look like this. To simplify grading, you must
use the same names for these private variables that are shown here. (The three dots mean that some parts of the
class are not shown.)

class Pathname

{
private int depth;
private String [] directories;
private String name;
private String type;



The variable directories points to an array of 10 strings, the names of the directories. The variable depth is the
number of directories in the pathname. The variable name is the file’s name. The variable type is the file’s type,
or the empty string "" if the file has no type.

Your class pathname must also have the following public methods. To simplify grading, you must use the
same names for methods and their parameters as are shown here. You can use any names you want for local
variables within methods.

public Pathname(String name)

(5 points.) Constructor. Initialize depth to 0, directories to an array of 10 strings, and type to the empty
string. Initialize the variable name to the parameter name. Hint: you may need to use this.

public Pathname(String name, String type)

(5 points.) Constructor. Like the previous constructor, but you must also initialize the variable type to the
parameter type. A class can have two constructors, or two methods, with the same name if they have
different parameters. Hint: you may need to use this.

public void addDirectory(String directory)

(5 points.) If depth is greater than 10, then do nothing: there is no room for more directories. Otherwise,
add directory to the end of the array directories, and increment depth. Hint: depth tells you where to
add directory in the array.

public boolean equals(Object object)

Test if object is equal to this pathname, using the techniques discussed in the lectures. Return true if it is,
and return false otherwise. Hint: you may need a loop. You may also need the operator s&&, which means
and.

public String toString()

Convert directories, name, and type to a string. See the example driver program below to find out how
to do that. Return the string. Hint: you may need a loop.

If a and b are pointers to class instances, then you can test if they are not equal by writing ! a.equals(b),
because the ! operator means not. Never write a.equals (b) == false: you will lose points if you do that.

You should also write a driver class to test your Pathname class, even though you will not get points for it.
Here’s what a driver class might look like. The comments show what should be printed if everything works
correctly. Note that if you print a pathname, then Java automatically calls its tostring method.

class Pathfinder
{
public static void main(String [] args)
{
Pathname p0 = new Pathname('"coffee", "java");
p0.addDirectory("home");
p0.addDirectory("Desktop");
p0.addDirectory("labs");
System.out.println(p0); // Prints /home/Desktop/labs/coffee.java

Pathname pl = new Pathame("cola");
pl.addDirectory("home");

pl.addDirectory("hax");

System.out.println(pl); // Prints /home/hax/cola



Pathname p2 = new Pathname("tea");

System.out.println(p2); // Prints /tea

System.out.println(p0.equals(p0)); // Prints true
System.out.println(p0.equals(pl)); // Prints false
System.out.println(pl.equals(p2)); // Prints false
System.out.println(p0.equals("Not a pathname")); // Prints false

}
}

This is not necessarily a complete set of tests! For best results, you should write your own driver class, with your
own main method, and your own tests.

3. Deliverables.

This lab assignment is due October 18-19, 2016. Please submit only one file, containing the Java Source code
for your pathname class and your driver class. If you have output, such as test cases produced by your main
method, then that should appear in a comment at the bottom of your file. If you do not know how to submit your
work, then please ask your lab TA.



